Forward-in-time and Backward-in-time Dispersion in the Convective Boundary Layer: the Concentration Footprint

نویسندگان

  • Xuhui Cai
  • Monique Y. Leclerc
چکیده

The turbulence field obtained using a large-eddy simulation model is used to simulate particle dispersion in the convective boundary layer with both forwardin-time and backward-in-time modes. A Lagrangian stochastic model is used to treat subgrid-scale turbulence. Results of forward dispersion match both laboratory experiments and previous numerical studies for different release heights in the convective boundary layer. Results obtained from backward dispersion show obvious asymmetry when directly compared to results from forward dispersion. However, a direct comparison of forward and backward dispersion has no apparent physical meaning and might be misleading. Results of backward dispersion can be interpreted as threedimensional or generalized concentration footprints, which indicate that sources in the entire boundary layer, not only sources at the surface, may influence a concentration measurement at a point. Footprints at four source heights in the convective boundary layer corresponding to four receptors are derived using forward and backward dispersion methods. The agreement among footprints derived with forward and backward methods illustrates the equivalence between both approaches. The paper shows explicitly that Lagrangian simulations can yield identical footprints using forward and backward methods in horizontally homogeneous turbulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of backward and forward Lagrangian footprint models in the surface layer

We ran a Lagrangian stochastic (LS) dispersion model in both forward-in-time and backward-in-time ways to derive footprints. Three Eulerian analytical footprint models were compared with this Lagrangian model for a wide atmospheric stability range. Despite some differences among the three analytical footprint models, their results generally agreed. Results from the forward LS simulations agreed...

متن کامل

Numerical Simulation of MHD Boundary ‎Layer Stagnation Flow of Nanofluid over a ‎Stretching Sheet with Slip and Convective ‎Boundary Conditions

   An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...

متن کامل

بررسی تغییرات ارتفاع و ضخامت لایه مرزی در شرایط گردوغباری شهر اهواز

One of the most important components of the extent of pollutants mixing and air quality at near the Earth's surface is the height of boundary layer. Many variables involved in determining the height of the boundary layer of atmosphere. Although all of the troposphere (the lower ~10km of the atmosphere) is affected by surface conditions, most of it has a relatively slow response time. The lower ...

متن کامل

A Three-dimensional Backward Lagrangian Footprint Model for a Wide Range of Boundary-layer Stratifications

We present a three-dimensional Lagrangian footprint model with the ability to predict the area of influence (footprint) of a measurement within a wide range of boundary-layer stratifications and receptor heights. The model approach uses stochastic backward trajectories of particles and satisfies the well-mixed condition in inhomogeneous turbulence for continuous transitions from stable to conve...

متن کامل

Three-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions

The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006